Impact of Catalysis-Relevant Oxidation and Annealing Treatments on Nanostructured GaRh Alloys

催化相关氧化和退火处理对纳米结构 GaRh 合金的影响

阅读:5
作者:Tzung-En Hsieh, Johannes Frisch, Regan G Wilks, Christian Papp, Marcus Bär

Abstract

In this study, we examine the surface-derived electronic and chemical structures of nanostructured GaRh alloys as a model system for supported catalytically active liquid metal solutions (SCALMS), a novel catalyst candidate for dehydrogenation reactions that are important for the petrochemical and hydrogen energy industry. It is reported that under ambient conditions, SCALMS tends to form a gallium oxide shell, which can be removed by an activation treatment at elevated temperatures and hydrogen flow to enhance the catalytic reactivity. We prepared a 7 at. % Rh containing the GaRh sample and interrogated the evolution of the surface chemical and electronic structure by photoelectron spectroscopy (complemented by scanning electron microscopy) upon performing surface oxidation and (activation treatment mimicking) annealing treatments in ultrahigh vacuum conditions. The initially pronounced Rh 4d and Fermi level-derived states in the valence band spectra disappear upon oxidation (due to formation of a GaOx shell) but reemerge upon annealing, especially for temperatures of 600 °C and above, i.e., when the GaOx shell is efficiently being removed and the Ga matrix is expected to be liquid. At the same temperature, new spectroscopic features at both the high and low binding energy sides of the Rh 3d5/2 spectra are observed, which we attribute to new GaRh species with depleted and enriched Rh contents, respectively. A liquefied and GaOx-free surface is also expected for GaRh SCALMS at reaction conditions, and thus the revealed high-temperature properties of the GaRh alloy provide insights about respective catalysts at work.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。