Metformin therapy in a hyperandrogenic anovulatory mutant murine model with polycystic ovarian syndrome characteristics improves oocyte maturity during superovulation

二甲双胍治疗具有多囊卵巢综合征特征的高雄激素无排卵突变小鼠模型可改善超排卵期间的卵母细胞成熟度

阅读:4
作者:Mary E Sabatini, Lankai Guo, Maureen P Lynch, Joseph O Doyle, Hojoon Lee, Bo R Rueda, Aaron K Styer

Background

Metformin, an oral biguanide traditionally used for the treatment of type 2 diabetes, is widely used for the management of polycystic ovary syndrome (PCOS)-related anovulation. Because of the significant prevalence of insulin resistance and glucose intolerance in PCOS patients, and their putative role in ovulatory dysfunction, the use of metformin was touted as a means to improve ovulatory function and reproductive outcomes in PCOS patients. To date, there has been inconsistent evidence to demonstrate a favorable effect of metformin on oocyte quality and competence in women with PCOS. Given the heterogeneous nature of this disorder, we hypothesized that metformin may be beneficial in mice with aberrant metabolic characteristics similar to a significant number of PCOS patients. The

Conclusions

Our data provide evidence to suggest that metformin may optimize ovulatory performance in mice with a specific reproductive and metabolic phenotype shared by women with PCOS. The only obvious difference between the mutant murine models is that the db/db mice have elevated leptin levels raising the questions of whether their response to metformin is related to elevated leptin levels and/or if a subset of PCOS women with hyperleptinemia may be responsive to metformin therapy. Further study is needed to better define a subset of women with PCOS that may be responsive to metformin.

Methods

We utilized metformin treatment in the transgenic ob/ob and db/db mutant murine models which demonstrate metabolic and reproductive characteristics similar to women with PCOS.

Results

Metformin did not improve in vitro oocyte maturation nor did it have an appreciable effect on in vitro granulosa cell luteinization (progesterone production) in any genotype studied. Although both mutant strains have evidence of hyperandrogenemia, anovulation, and hyperinsulinemia, only db/db mice treated with metformin had a greater number of mature oocytes and total overall oocytes compared to control. There was no observed impact on body mass, or serum glucose and androgens in any genotype. Conclusions: Our data provide evidence to suggest that metformin may optimize ovulatory performance in mice with a specific reproductive and metabolic phenotype shared by women with PCOS. The only obvious difference between the mutant murine models is that the db/db mice have elevated leptin levels raising the questions of whether their response to metformin is related to elevated leptin levels and/or if a subset of PCOS women with hyperleptinemia may be responsive to metformin therapy. Further study is needed to better define a subset of women with PCOS that may be responsive to metformin.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。