Nitric oxide modulating ion balance in Hylotelephium erythrostictum roots subjected to NaCl stress based on the analysis of transcriptome, fluorescence, and ion fluxes

基于转录组、荧光和离子通量的分析,一氧化氮调节受 NaCl 胁迫的 Hylotelephium erythrostictum 根中的离子平衡

阅读:5
作者:Zhixin Chen, Xueqi Zhao, Zenghui Hu, Pingsheng Leng

Abstract

Soil salinization is one of the main stress factors that affect both growth and development of plants. Hylotelephium erythrostictum exhibits strong resistance to salt, but the underlying genetic mechanisms remain unclear. In this study, hydroponically cultured seedlings of H. erythrostictum were exposed to 200 mM NaCl. RNA-Seq was used to determine root transcriptomes at 0, 5, and 10 days, and potential candidate genes with differential expression were analyzed. Transcriptome sequencing generated 89.413 Gb of raw data, which were assembled into 111,341 unigenes, 82,081 of which were annotated. Differentially expressed genes associated to Na+ and K+ transport, Ca2+ channel, calcium binding protein, and nitric oxide (NO) biosynthesis had high expression levels in response to salt stress. An increased fluorescence intensity of NO indicated that it played an important role in the regulation of the cytosolic K+/Na+ balance in response to salt stress. Exogenous NO donor and NO biosynthesis inhibitors significantly increased and decreased the Na+ efflux, respectively, thus causing the opposite effect for K+ efflux. Moreover, under salt stress, exogenous NO donors and NO biosynthesis inhibitors enhanced and reduced Ca2+ influx, respectively. Combined with Ca2+ reagent regulation of Na+ and K+ fluxes, this study identifies how NaCl-induced NO may function as a signaling messenger that modulates the K+/Na+ balance in the cytoplasm via the Ca2+ signaling pathway. This enhances the salt resistance in H. erythrostictum roots.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。