Enhanced efficiency of MS/MS all-ion fragmentation for non-targeted analysis of trace contaminants in surface water using multivariate curve resolution and data fusion

使用多元曲线分辨率和数据融合提高 MS/MS 全离子碎裂效率,用于地表水中痕量污染物的非目标分析

阅读:5
作者:Maryam Vosough, Amir Salemi, Sarah Rockel, Torsten C Schmidt

Abstract

Data-independent acquisition-all-ion fragmentation (DIA-AIF) mode of mass spectrometry can facilitate wide-scope non-target analysis of contaminants in surface water due to comprehensive spectral identification. However, because of the complexity of the resulting MS2 AIF spectra, identifying unknown pollutants remains a significant challenge, with a significant bottleneck in translating non-targeted chemical signatures into environmental impacts. The present study proposes to process fused MS1 and MS2 data sets obtained from LC-HRMS/MS measurements in non-targeted AIF workflows on surface water samples using multivariate curve resolution-alternating least squares (MCR-ALS). This enables straightforward assignment between precursor ions obtained from resolved MS1 spectra and their corresponding MS2 spectra. The method was evaluated for two sets of tap water and surface water contaminated with 14 target chemicals as a proof of concept. The data set of surface water samples consisting of 3506 MS1 and 2170 MS2 AIF mass spectral features was reduced to 81 components via a fused MS1-MS2 MCR model that describes at least 98.8% of the data. Each component summarizes the distinct chromatographic elution of components together with their corresponding MS1 and MS2 spectra. MS2 spectral similarity of more than 82% was obtained for most target chemicals. This highlights the potential of this method for unraveling the composition of MS/MS complex data in a water environment. Ultimately, the developed approach was applied to the retrospective non-target analysis of an independent set of surface water samples.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。