Fluoride induces osteoblast autophagy by inhibiting the PI3K/AKT/mTOR signaling pathway in vivo and in vitro

氟化物通过抑制体内和体外 PI3K/AKT/mTOR 信号通路诱导成骨细胞自噬

阅读:4
作者:Yan Linghu, Chao-Nan Deng, Li He, Qi Wu, Lin Xu, Yan-Ni Yu

Abstract

Fluorosis primarily manifests as bone damage in the form of dental fluorosis and skeletal fluorosis and represents a critical global public health challenge. However, few studies have examined autophagy-related signaling pathways in skeletal fluorosis. This study aimed to investigate the effect of fluoride on autophagy in osteoblasts using comprehensive methods and to explore the role of the PI3K/AKT/mTOR signaling pathway in regulating fluoride-induced autophagy in osteoblasts. Sprague-Dawley (SD) rats were exposed to different concentrations of fluoride (NaF: 5, 50, and 100 mg/L) for six months. Primary osteoblasts were treated with 0.5, 1.0, or 3.0 mM NaF. Hematoxylin and eosin (H&E) staining, transmission electron microscopy (TEM), immunohistochemistry (IHC), immunofluorescence staining, and western blotting were performed to evaluate morphological changes in bone tissues and autophagosomes and to detect the protein expression of autophagy-related markers and PI3K/AKT/mTOR signaling pathway-related molecules both in vivo and in vitro. The bone tissues of fluoride-exposed rats showed osteosclerosis, autophagosomes and autolysosomes. LC3B immunofluorescence staining revealed an increase in autophagosomes in the primary osteoblasts treated with fluoride. The LC3Ⅱ/Ⅰ ratio and levels of autophagy-related markers (Beclin 1 and Atg7) were increased, whereas P62 levels were decreased in bone tissues and primary osteoblasts in the fluoride groups. Simultaneously, p-AKT and p-mTOR levels were reduced in bone tissues and primary osteoblasts in the fluoride groups. Moreover, a PI3K inhibitor (LY294002) further downregulated p-AKT and p-mTOR protein expression but slightly increased the LC3Ⅱ/Ⅰ ratio in primary osteoblasts. These results demonstrate that fluoride induces autophagy in osteoblasts by inhibiting the PI3K/AKT/mTOR signaling pathway, which deepens our understanding of the molecular mechanisms underlying fluoride-induced bone damage and provides a theoretical basis for the prevention and treatment of skeletal fluorosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。