The Enzyme Effect: Broadening the Horizon of MS Optimization to Nontryptic Digestion in Proteomics

酶效应:将质谱优化范围拓展至蛋白质组学中的非胰蛋白酶消化

阅读:10
作者:Kinga Nagy, Péter Sándor, Károly Vékey, László Drahos, Ágnes Révész

Abstract

In recent years, alternative enzymes with varied specificities have gained importance in MS-based bottom-up proteomics, offering orthogonal information about biological samples and advantages in certain applications. However, most mass spectrometric workflows are optimized for tryptic digests. This raises the questions of whether enzyme specificity impacts mass spectrometry and if current methods for nontryptic digests are suboptimal. The success of peptide and protein identifications relies on the information content of MS/MS spectra, influenced by collision energy in collision-induced dissociation. We investigated this by conducting LC-MS/MS measurements with different enzymes, including trypsin, Arg-C, Glu-C, Asp-N, and chymotrypsin, at varying collision energies. We analyzed peptide scores for thousands of peptides and determined optimal collision energy (CE) values. Our results showed a linear m/z dependence for all enzymes, with Glu-C, Asp-N, and chymotrypsin requiring significantly lower energies than trypsin and Arg-C. We proposed a tailored CE selection method for these alternative enzymes, applying ca. 20% lower energy compared to tryptic peptides. This would result in a 10-15 eV decrease on a Bruker QTof instrument and a 5-6 NCE% (normalized collision energy) difference on an Orbitrap. The optimized method improved bottom-up proteomics performance by 8-32%, as measured by peptide identification and sequence coverage. The different trends in fragmentation behavior were linked to the effects of C-terminal basic amino acids for Arg-C and trypsin, stabilizing y fragment ions. This optimized method boosts the performance and provides insight into the impact of enzyme specificity. Data sets are available in the MassIVE repository (MSV000095066).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。