Combining nano-curcumin with catechin improves COVID-19-infected patient's inflammatory conditions

纳米姜黄素与儿茶素结合可改善 COVID-19 感染患者的炎症状况

阅读:10
作者:Talar Ahmad Merza Mohammad

Aims

A hyperinflammatory condition is brought on by the development of Coronavirus disease 2019 (COVID-19), which is characterized by an elevation of T helper (Th) 17 cells, high levels of pro-inflammatory cytokines, and a depletion of regulatory T (Treg) cells.

Conclusion

Overall, our results show that combining nano-curcumin with catechin has a more notable impact on the enhancement of TCD4+, TCD8+, and Treg cells, as well as a decrease in Th17 cells and their mediators, suggesting a promising combination therapy in reducing the inflammatory conditions of COVID-19 infected patients.

Methods

In this research, we examined the effect of nano-curcumin and catechin on the TCD4+, TCD8+, Th17, and Treg cells and their associated factors in COVID-19 patients. For this purpose, 160 (50 patients excluded during the study) COVID-19 patients were divided into four groups: placebo, nano-curcumin, catechin, and nano-curcumin + catechin. The frequency of TCD4+, TCD8+, Th17, and Treg cells, the gene expression of transcription factors (STAT3, RORt, and FoxP3) relevant to Th17 and Treg, as well as the serum levels of cytokines (IL-6, IL17, IL1-b, IL-10, and TGF-), were all evaluated intra- and inter-group, before and after treatment, in all groups.

Results

Our study showed that TCD4 + and TCD8 + cells were significantly higher in the nano-curcumin + catechin group compared to the control group, whereas Th17 was lower than the initial value. Furthermore, compared to the placebo-received group, cytokines and transcription factors associated with Th17 were significantly lower in the nano-curcumin + catechin group. Additionally, combined therapy increased Treg cells and transcription factors compared to the placebo group.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。