Nanogels with High Loading of Anesthetic Nanocrystals for Extended Duration of Sciatic Nerve Block

含有大量麻醉纳米晶体的纳米凝胶可延长坐骨神经阻滞时间

阅读:5
作者:Teresa Alejo, Laura Uson, Guillermo Landa, Martin Prieto, Cristina Yus Argón, Sara Garcia-Salinas, Ricardo de Miguel, Ana Rodríguez-Largo, Silvia Irusta, Victor Sebastian, Gracia Mendoza, Manuel Arruebo

Abstract

The development of thermoresponsive nanogels loaded with nanocrystals of the local anesthetic bupivacaine nanocrystals (BNCs) for prolonged peripheral nerve pain relief is reported here. BNCs were prepared using the antisolvent precipitation method from the hydrophobic form of bupivacaine (bupivacaine free base). The as-prepared BNCs were used stand-alone or encapsulated in temperature-responsive poly(ethylene glycol) methyl ether methacrylate (OEGMA)-based nanogels, resulting in bupivacaine NC-loaded nanogels (BNC-nanogels) of monodisperse size. The synthesis protocol has rendered high drug loadings (i.e., 93.8 ± 1.5 and 84.8 ± 1.2 wt % for the NC and BNC-nanogels, respectively) and fast drug dissolution kinetics in the resulting composite material. In vivo tests demonstrated the efficacy of the formulation along with an extended duration of sciatic nerve block in murine models of more than 8 h with a formulation containing only 2 mg of the local anesthetic thanks to the thermoresponsive character of the polymer, which, at body temperature, becomes hydrophobic and acts as a diffusion barrier for the encapsulated drug nanocrystals. The hydrophobicity of the encapsulated bupivacaine free base probably facilitates its pass through cell membranes and also binds strongly to their hydrophobic lipid bilayer, thereby protecting molecules from diffusion to extracellular media and to the bloodstream, reducing their clearance. When using BNC-nanogels, the duration of the anesthetic blockage lasted twice as long as compared to the effect of just BNCs or a conventional bupivacaine hydrochloride solution both containing equivalent amounts of the free drug. Results of the in vivo tests showed enough sensory nerve block to potentially relieve pain, but still having mobility in the limb, which enables motor function when required. The BNC-nanogels presented minimal toxicity in the in vivo study due to their sustained drug release and excellent biocompatibility. The encapsulation of nano-sized crystals of bupivacaine provides a prolonged regional anesthesia with reduced toxicity, which could be advantageous in the management of chronic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。