Rosiglitazone Alleviates Contrast-Induced Acute Kidney Injury in Rats via the PPAR γ/NLRP3 Signaling Pathway

罗格列酮通过 PPARγ/NLRP3 信号通路减轻大鼠造影剂诱发的急性肾损伤

阅读:5
作者:Jiayi Wu, Jinhua Huang, En Chen, Xingchun Zheng

Background

This study investigated the effect and mechanism of rosiglitazone on a rat model with contrast-induced acute kidney injury (CI-AKI). Materials and

Conclusion

Rosiglitazone could alleviate acute renal injury in the CI-AKI rat model by regulating the PPARγ/NLRP3 signaling pathway and should be further investigated as a potential treatment in clinical studies.

Methods

The CI-AKI rat model was established from Sprague Dawley rats by furosemide injection (10 ml/kg) to the caudal vein followed by iohexol (11.7 ml/kg). The experimental grouping was randomly allocated into control, model, rosiglitazone, and T0070907 groups. Blood samples were collected from the abdominal aorta. Serum creatinine, urea nitrogen, MDA, and SOD contents were detected by biochemical analysis. TNF-α and IL-10 expression was detected by ELISA. Urine creatinine and urine protein were measured following 24-h urine biochemistry testing. Cell pathology and apoptosis were detected by H&E and TUNEL staining, respectively. PPARγ, NLRP3, eNOS, and caspase-3 mRNA expression were detected by qPCR. Caspase-3 and NLRP3 expression were detected by immunohistochemistry.

Results

The CI-AKI rat model was successfully established because the results showed that compared with control, serum creatinine, urea nitrogen, MDA, SOD, TNF-α, and IL-10, urine creatinine and urine protein levels were significantly increased in the model group, indicating AKI, but was significantly decreased with rosiglitazone treatment, indicating recovery from injury, while opposite results were obtained with SOD. Apoptosis rate was significantly increased in the model group and significantly decreased with rosiglitazone treatment. NLRP3 and eNOS increased significantly in the model group and decreased significantly with rosiglitazone treatment, while opposite results were obtained with PPARγ. NLRP3 and caspase-3 protein expression was significantly increased in the model group and significantly decreased with rosiglitazone treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。