Blue light-emitting diodes based on colloidal quantum dots with reduced surface-bulk coupling

基于降低表面-体积耦合的胶体量子点的蓝色发光二极管

阅读:7
作者:Xingtong Chen, Xiongfeng Lin, Likuan Zhou, Xiaojuan Sun, Rui Li, Mengyu Chen, Yixing Yang, Wenjun Hou, Longjia Wu, Weiran Cao, Xin Zhang, Xiaolin Yan, Song Chen

Abstract

To industrialize printed full-color displays based on quantum-dot light-emitting diodes, one must explore the degradation mechanism and improve the operational stability of blue electroluminescence. Here, we report that although state-of-the-art blue quantum dots, with monotonically-graded core/shell/shell structures, feature near-unity photoluminescence quantum efficiency and efficient charge injection, the significant surface-bulk coupling at the quantum-dot level, revealed by the abnormal dipolar excited state, magnifies the impact of surface localized charges and limits operational lifetimes. Inspired by this, we propose blue quantum dots with a large core and an intermediate shell featuring nonmonotonically-graded energy levels. This strategy significantly reduces surface-bulk coupling and tunes emission wavelength without compromising charge injection. Using these quantum dots, we fabricate bottom-emitting devices with emission colors varying from near-Rec.2020-standard blue to sky blue. At an initial luminance of 1000 cd m-2, these devices exhibit T95 operational lifetimes ranging from 75 to 227 h, significantly surpassing the existing records.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。