Stability Bounds for Micron Scale Ag Conductor Lines Produced by Electrohydrodynamic Inkjet Printing

电流体动力喷墨打印制备微米级银导体线的稳定性界限

阅读:5
作者:Jinxin Yang, Pei He, Brian Derby

Abstract

Continuous conducting lines of width 5-20 μm have been printed with a Ag nanoparticle ink using drop-on-demand (DOD) electrohydrodynamic (EHD) inkjet printing on Si and PDMS substrates, with advancing contact angles of 11° and 35°, respectively, and a zero receding contact angle. It is only possible to achieve stable parallel sided lines within a limited range of drop spacings, and this limiting range for stable line printing decreases as the contact angle of the ink on the substrate increases. The upper bound drop spacing for stable line formation is determined by a minimum drop overlap required to prevent contact line retraction, and the lower bound is governed by competing flows for drop spreading onto an unwetted substrate and a return flow driven by a Laplace pressure difference between the newly deposited drops and the fluid some distance from the growing tip. The upper and lower bounds are shown to be consistent with those predicted using existing models for the stability of inkjet printed lines produced using piezoelectric droplet generators. A comparison with literature data for EHD printed lines finds that these limiting bounds apply with printed line widths as small as 200 nm using subfemtoliter drop volumes. When a fine grid pattern is printed, local differences in Laplace pressure lead to the line width retracting to the minimum stable width and excess ink being transported to the nodes of the grid. After printing and sintering, the printed tracks have a conductivity of about 15%-20% of bulk Ag on the Si substrate, which correlates with a porosity of about 60%.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。