Immunometabolic Signatures Predict Risk of Progression to Active Tuberculosis and Disease Outcome

免疫代谢特征可预测活动性结核病进展的风险和疾病结果

阅读:8
作者:Fergal J Duffy, January Weiner 3rd, Scott Hansen, David L Tabb, Sara Suliman, Ethan Thompson, Jeroen Maertzdorf, Smitha Shankar, Gerard Tromp, Shreemanta Parida, Drew Dover, Michael K Axthelm, Jayne S Sutherland, Hazel M Dockrell, Tom H M Ottenhoff, Thomas J Scriba, Louis J Picker, Gerhard Walzl, St

Abstract

There remains a pressing need for biomarkers that can predict who will progress to active tuberculosis (TB) after exposure to Mycobacterium tuberculosis (MTB) bacterium. By analyzing cohorts of household contacts of TB index cases (HHCs) and a stringent non-human primate (NHP) challenge model, we evaluated whether integration of blood transcriptional profiling with serum metabolomic profiling can provide new understanding of disease processes and enable improved prediction of TB progression. Compared to either alone, the combined application of pre-existing transcriptome- and metabolome-based signatures more accurately predicted TB progression in the HHC cohorts and more accurately predicted disease severity in the NHPs. Pathway and data-driven correlation analyses of the integrated transcriptional and metabolomic datasets further identified novel immunometabolomic signatures significantly associated with TB progression in HHCs and NHPs, implicating cortisol, tryptophan, glutathione, and tRNA acylation networks. These results demonstrate the power of multi-omics analysis to provide new insights into complex disease processes.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。