High-Performance P-Channel Tin Halide Perovskite Thin Film Transistor Utilizing a 2D-3D Core-Shell Structure

采用 2D-3D 核壳结构的高性能 P 沟道锡卤化物钙钛矿薄膜晶体管

阅读:5
作者:Junghwan Kim, Yu-Shien Shiah, Kihyung Sim, Soshi Iimura, Katsumi Abe, Masatake Tsuji, Masato Sasase, Hideo Hosono

Abstract

Metal halide perovskites (MHPs) are plausible candidates for practical p-type semiconductors. However, in thin film transistor (TFT) applications, both 2D PEA2 SnI4 and 3D FASnI3 MHPs have different drawbacks. In 2D MHP, the TFT mobility is seriously reduced by grain-boundary issues, whereas 3D MHP has an uncontrollably high hole density, which results in quite a large threshold voltage (Vth ). To overcome these problems, a new concept based on a 2D-3D core-shell structure is herein proposed. In the proposed structure, a 3D MHP core is fully isolated by a 2D MHP, providing two desirable effects as follows. (i) Vth can be independently controlled by the 2D component, and (ii) the grain-boundary resistance is significantly improved by the 2D/3D interface. Moreover, SnF2 additives are used, and they facilitate the formation of the 2D/3D core-shell structure. Consequently, a high-performance p-type Sn-based MHP TFT with a field-effect mobility of ≈25 cm2 V-1 s-1 is obtained. The voltage gain of a complementary metal oxide semiconductor (CMOS) inverter comprising an n-channel InGaZnOx TFT and a p-channel Sn-MHP TFT is ≈200 V/V at VDD = 20 V. Overall, the proposed 2D/3D core-shell structure is expected to provide a new route for obtaining high-performance MHP TFTs.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。