High Sodium Ion Storage by Multifunctional Covalent Organic Frameworks for Sustainable Sodium Batteries

利用多功能共价有机框架实现高钠离子存储,打造可持续钠电池

阅读:4
作者:Mohammad K Shehab, Hani M El-Kaderi

Abstract

Rechargeable sodium batteries hold great promise for circumventing the increasing demand for lithium-ion batteries (LIBs) and the limited supply of lithium. However, efficient sodium ion storage remains a great impediment in this field. In this study, we report the designed synthesis of a multifunctional two-dimensional covalent organic framework featuring hexaazatrinaphthalene cores linked by imidazole moieties and demonstrate its effective performance in sodium ion storage. Benzimidazole-linked covalent organic framework (BCOF-1) was synthesized by a condensation reaction between hexaazatrinaphthalenehexamine (HATNHA) and terephthalaldehyde (TA) and exhibited a high theoretical specific capacity of 392 mA h g-1. BCOF-1 crystallizes, forming eclipsed AA stacking and mesoporous hexagonal one-dimensional channels with high surface area (840 m2 g-1), facilitating fast ionic mobility and charge transfer and enabling high-rate capability at high current rates. BCOF-1 exhibits pseudocapacitive-like behavior with a high specific capacity of 387 mA h g-1, an energy density of 302 W h kg-1 at 0.1 C, and a power density of 682 W kg-1 at 5 C. Our results demonstrate that redox-active COFs have the desired structural and electronic merits to advance the use of organic electrodes in sodium-ion storage toward sustainable and efficient batteries.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。