Fluorinated Nanosized Zeolitic-Imidazolate Frameworks as Potential Devices for Mechanical Energy Storage

氟化纳米沸石-咪唑酯骨架可作为机械能存储的潜在装置

阅读:5
作者:Eder Amayuelas, Judit Farrando-Perez, Alexander Missyul, Yaroslav Grosu, Joaquin Silvestre-Albero, Carolina Carrillo-Carrión

Abstract

Fluorination is one of the most efficient and universal strategies to increase the hydrophobicity of materials and consequently their water stability. Zeolitic-imidazolate frameworks (ZIFs), which have limited stability in aqueous media and even lower stability when synthesized on a nanometric scale, can greatly benefit from the incorporation of fluorine atoms, not only to improve their stability but also to provide additional properties. Herein, we report the preparation of two different fluorinated ZIFs through a simple and scalable approach by using mixed ligands [2-methylimidazole, as a common ligand, and 4-(4-fluorophenyl)-1H-imidazole (monofluorinated linker) or 2-methyl-5-(trifluoromethyl)-1H-imidazole (trifluorinated linker) as a dopant], demonstrating the high versatility of the synthetic method developed to incorporate different fluorine-containing imidazole-based ligands. Second, we demonstrate for the first time that these nanoscale fluorinated ZIFs outperform the pristine ZIF-8 for water intrusion/extrusion, i.e., for storing mechanical energy via forced intrusion of nonwetting water due to the improved hydrophobicity and modified framework dynamics. Moreover, we also show that by varying the nature of the F-imidazole ligand, the performance of the resulting ZIFs, including the pressure thresholds and stored/dissipated energy, can be finely tuned, thus opening the path for the design of a library of fluorine-modified ZIFs with unique behavior.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。