Localized nanoscopic surface measurements of nickel-modified mica for single-molecule DNA sequence sampling

镍改性云母的局部纳米表面测量用于单分子 DNA 序列采样

阅读:5
作者:Carlin Hsueh, Haijian Chen, James K Gimzewski, Jason Reed, Tarek M Abdel-Fattah

Abstract

Cleaved, cation-derivatized Muscovite mica is utilized extensively in atomic force microscopy (AFM) imaging because of its flatness over large areas (millimeter cleavage planes with local root-mean-square roughness < 0.3 nm), ease of preparation, and ability to adsorb charged biomolecules such as DNA (work by Hansma and Laney, Guthold et al., and McMaster et al.). In particular, NiCl(2) treatment has become a common method for controlling DNA adsorption on mica substrates while retaining the mica's ultraflat surface (work by Pietrement et al.). While several studies have modeled the mica/metal ion/DNA system using macroscopic colloidal theory (DLVO, etc.; Pietrement et al., Sushko et al., Pastre et al., and Cheng et al.), nickel/mica's physicochemical properties have not been well characterized on the nanoscale. Efforts to manipulate and engineer DNA nanostructures would benefit greatly from a better understanding of the surface chemistry of nickel/mica. Here we present in situ nanometer- and attogram-scale measurements and thermodynamic simulation results that show that the surface chemistry of nickel-treated mica is more complex than generally appreciated by AFM practitioners because of metal-ion speciation effects present at neutral pH. We also show that, under certain preparations, nickel/mica allows in situ nanoscopic nucleotide sequence mapping within individual surface-adsorbed DNA molecules by permitting localized, controlled desorption of the double helix by soluble DNA binding enzymes. These results should aid efforts to precisely control the DNA/mica binding affinity, particularly at the physiological pH ranges required by enzymatic biochemistry (pH 7.0-8.5), and facilitate the development of more complex and useful biochemical manipulations of adsorbed DNA, such as single-molecule sequencing.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。