Conclusions
Our protocol provides a robust way to impose M. phaseolina infection on chickpea plants under natural field conditions and to investigate plant responses to the infection at morphological, physiological, and molecular levels. This method can also be used to screen for other soil-borne diseases in a variety of plants.
Results
We used a chickpea plot with >30% DRR incidence, and enriched the inoculum by cultivating highly susceptible chickpea plant genotypes and incorporating infected plant material into the soil. The chickpea plants were then subjected to infection in developed sick plots with various levels of soil moisture under natural field conditions. Conclusions: Our protocol provides a robust way to impose M. phaseolina infection on chickpea plants under natural field conditions and to investigate plant responses to the infection at morphological, physiological, and molecular levels. This method can also be used to screen for other soil-borne diseases in a variety of plants.
