Bladder hyperactivity and increased excitability of bladder afferent neurons associated with reduced expression of Kv1.4 alpha-subunit in rats with cystitis

膀胱炎大鼠膀胱活动亢进、膀胱传入神经元兴奋性增加与 Kv1.4 α 亚基表达减少相关

阅读:4
作者:Yukio Hayashi, Koichi Takimoto, Michael B Chancellor, Kristin A Erickson, Vickie L Erickson, Tsukasa Kirimoto, Koushi Nakano, William C de Groat, Naoki Yoshimura

Abstract

Hyperexcitability of C-fiber bladder afferent pathways has been proposed to contribute to urinary frequency and bladder pain in chronic bladder inflammation including interstitial cystitis. However, the detailed mechanisms inducing afferent hyperexcitability after bladder inflammation are not fully understood. Thus, we investigated changes in the properties of bladder afferent neurons in rats with bladder inflammation induced by intravesical application of hydrochloric acid. Eight days after the treatment, bladder function and bladder sensation were analyzed using cystometry and an electrodiagnostic device of sensory function (Neurometer), respectively. Whole cell patch-clamp recordings and immunohistochemical staining were also performed in dissociated bladder afferent neurons identified by a retrograde tracing dye, Fast Blue, injected into the bladder wall. Cystitis rats showed urinary frequency that was inhibited by pretreatment with capsaicin and bladder hyperalgesia mediated by C-fibers. Capsaicin-sensitive bladder afferent neurons from sham rats exhibited high thresholds for spike activation and a phasic firing pattern, whereas those from cystitis rats showed lower thresholds for spike activation and a tonic firing pattern. Transient A-type K(+) current density in capsaicin-sensitive bladder afferent neurons was significantly smaller in cystitis rats than in sham rats, although sustained delayed-rectifier K(+) current density was not altered after cystitis. The expression of voltage-gated K(+) Kv1.4 alpha-subunits, which can form A-type K(+) channels, was reduced in bladder afferent neurons from cystitis rats. These data suggest that bladder inflammation increases bladder afferent neuron excitability by decreasing expression of Kv1.4 alpha-subunits. Similar changes in capsaicin-sensitive C-fiber afferent terminals may contribute to bladder hyperactivity and hyperalgesia due to acid-induced bladder inflammation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。