Uncondensed Graphitic Carbon Nitride on Reduced Graphene Oxide for Oxygen Sensing via a Photoredox Mechanism

还原氧化石墨烯上的未凝聚石墨相氮化碳通过光氧化还原机理进行氧气传感

阅读:5
作者:James E Ellis, Dan C Sorescu, Seth C Burkert, David L White, Alexander Star

Abstract

Melon, a polymeric, uncondensed graphitic carbon nitride with a two-dimensional structure, has been coupled with reduced graphene oxide (rGO) to create an oxygen chemiresistor sensor that is active under UV photoactivation. Oxygen gas is an important sensor target in a variety of areas including industrial safety, combustion process monitoring, as well as environmental and biomedical fields. Because of the intimate electrical interface formed between melon and rGO, charge transfer of photoexcited electrons occurs between the two materials when under UV (λ = 365 nm) irradiation. A photoredox mechanism wherein oxygen is reduced on the rGO surface provides the basis for sensing oxygen gas in the concentration range 300-100 000 ppm. The sensor response was found to be logarithmically proportional to oxygen gas concentration. DFT calculations of a melon-oxidized graphene composite found that slight protonation of melon leads to charge accumulation on the rGO layer and a corresponding charge depletion on the melon layer. This work provides an example of a metal-free system for solid-gas interface sensing via a photoredox mechanism.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。