Engineered SH2 domains with tailored specificities and enhanced affinities for phosphoproteome analysis

经过设计的 SH2 结构域具有定制的特异性和增强的磷酸化蛋白质组分析亲和力

阅读:10
作者:Gianluca Veggiani, Haiming Huang, Bradley P Yates, Jiefei Tong, Tomonori Kaneko, Rakesh Joshi, Shawn S C Li, Michael F Moran, Gerald Gish, Sachdev S Sidhu

Abstract

Protein phosphorylation is the most abundant post-translational modification in cells. Src homology 2 (SH2) domains specifically recognize phosphorylated tyrosine (pTyr) residues to mediate signaling cascades. A conserved pocket in the SH2 domain binds the pTyr side chain and the EF and BG loops determine binding specificity. By using large phage-displayed libraries, we engineered the EF and BG loops of the Fyn SH2 domain to alter specificity. Engineered SH2 variants exhibited distinct specificity profiles and were able to bind pTyr sites on the epidermal growth factor receptor, which were not recognized by the wild-type Fyn SH2 domain. Furthermore, mass spectrometry showed that SH2 variants with additional mutations in the pTyr-binding pocket that enhanced affinity were highly effective for enrichment of diverse pTyr peptides within the human proteome. These results showed that engineering of the EF and BG loops could be used to tailor SH2 domain specificity, and SH2 variants with diverse specificities and high affinities for pTyr residues enabled more comprehensive analysis of the human phosphoproteome. STATEMENT: Src Homology 2 (SH2) domains are modular domains that recognize phosphorylated tyrosine embedded in proteins, transducing these post-translational modifications into cellular responses. Here we used phage display to engineer hundreds of SH2 domain variants with altered binding specificities and enhanced affinities, which enabled efficient and differential enrichment of the human phosphoproteome for analysis by mass spectrometry. These engineered SH2 domain variants will be useful tools for elucidating the molecular determinants governing SH2 domains binding specificity and for enhancing analysis and understanding of the human phosphoproteome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。