Study of Chitosan-Stabilized Ti3C2T x MXene for Ultrasensitive and Interference-Free Detection of Gaseous H2O2

壳聚糖稳定化的 Ti3C2T x MXene 对气态 H2O2 的超灵敏和无干扰检测的研究

阅读:6
作者:Jelena Isailović, Ana Oberlintner, Uroš Novak, Matjaž Finšgar, Filipa M Oliveira, Jan Paštika, Zdeněk Sofer, Nikola Tasić, Rui Gusmão, Samo B Hočevar

Abstract

The development of sensitive, selective, and reliable gaseous hydrogen peroxide (H2O2) sensors operating at room temperature still represents a remaining challenge. In this work, we have investigated and combined the advantageous properties of a two-dimensional Ti3C2Tx MXene material that exhibits a large specific surface area and high surface activity, with favorable conducting and stabilizing properties of chitosan. The MXene-chitosan membrane was deposited on the ferrocyanide-modified screen-printed working carbon electrode, followed by applying poly(acrylic acid) as an electrolyte and accumulation medium for gaseous H2O2. The sensor showed highly sensitive and selective electroanalytical performance for detecting trace concentrations of gaseous H2O2 with a very low detection limit of 4 μg m-3 (4 ppbv), linear response in the studied concentration range of 0.5-30.0 mg m-3, and good reproducibility with an RSD of 1.3%. The applicability of the sensor was demonstrated by point-of-interest detection of gaseous H2O2 during the real hair bleaching process with a 9 and 12% H2O2 solution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。