Rap1a activation by CalDAG-GEFI and p38 MAPK is involved in E-selectin-dependent slow leukocyte rolling

CalDAG-GEFI 和 p38 MAPK 激活 Rap1a 参与 E-选择素依赖性白细胞缓慢滚动

阅读:5
作者:Anika Stadtmann, Laura Brinkhaus, Helena Mueller, Jan Rossaint, Matteo Bolomini-Vittori, Wolfgang Bergmeier, Hugo Van Aken, Denisa D Wagner, Carlo Laudanna, Klaus Ley, Alexander Zarbock

Abstract

Rolling leukocytes are exposed to different adhesion molecules and chemokines. Neutrophils rolling on E-selectin induce integrin αLβ2-mediated slow rolling on ICAM-1 by activating a phospholipase C (PLC)γ2-dependent and a separate PI3Kγ-dependent pathway. E-selectin-signaling cooperates with chemokine signaling to recruit neutrophils into inflamed tissues. However, the distal signaling pathway linking PLCγ2 (Plcg2) to αLβ2-activation is unknown. To identify this pathway, we used different Tat-fusion-mutants and gene-deficient mice in intravital microscopy, autoperfused flow chamber, peritonitis, and biochemical studies. We found that the small GTPase Rap1 is activated following E-selectin engagement and that blocking Rap1a in Pik3cg-/- mice by a dominant-negative Tat-fusion mutant completely abolished E-selectin-mediated slow rolling. We identified CalDAG-GEFI (Rasgrp2) and p38 MAPK as key signaling intermediates between PLCγ2 and Rap1a. Gαi-independent leukocyte adhesion to and transmigration through endothelial cells in inflamed postcapillary venules of the cremaster muscle were completely abolished in Rasgrp2-/- mice. The physiological importance of CalDAG-GEFI in E-selectin-dependent integrin activation is shown by complete inhibition of neutrophil recruitment into the inflamed peritoneal cavity of Rasgrp2-/- leukocytes treated with pertussis toxin to block Gαi-signaling. Our data demonstrate that Rap1a activation by p38 MAPK and CalDAG-GEFI is involved in E-selectin-dependent slow rolling and leukocyte recruitment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。