Muscular dystrophy associated with alpha-dystroglycan deficiency in Sphynx and Devon Rex cats

斯芬克斯猫和德文卷毛猫的 α-肌营养不良症与 α-肌营养不良聚糖缺乏有关

阅读:10
作者:Paul T Martin, G Diane Shelton, Peter J Dickinson, Beverly K Sturges, Rui Xu, Richard A LeCouteur, Ling T Guo, Robert A Grahn, Harriet P Lo, Kathryn N North, Richard Malik, Eva Engvall, Leslie A Lyons

Abstract

Recent studies have identified a number of forms of muscular dystrophy, termed dystroglycanopathies, which are associated with loss of natively glycosylated alpha-dystroglycan. Here we identify a new animal model for this class of disorders in Sphynx and Devon Rex cats. Affected cats displayed a slowly progressive myopathy with clinical and histologic hallmarks of muscular dystrophy including skeletal muscle weakness with no involvement of peripheral nerves or CNS. Skeletal muscles had myopathic features and reduced expression of alpha-dystroglycan, while beta-dystroglycan, sarcoglycans, and dystrophin were expressed at normal levels. In the Sphynx cat, analysis of laminin and lectin binding capacity demonstrated no loss in overall glycosylation or ligand binding for the alpha-dystroglycan protein, only a loss of protein expression. A reduction in laminin-alpha2 expression in the basal lamina surrounding skeletal myofibers was also observed. Sequence analysis of translated regions of the feline dystroglycan gene (DAG1) in affected cats did not identify a causative mutation, and levels of DAG1 mRNA determined by real-time QRT-PCR did not differ significantly from normal controls. Reduction in the levels of glycosylated alpha-dystroglycan by immunoblot was also identified in an affected Devon Rex cat. These data suggest that muscular dystrophy in Sphynx and Devon Rex cats results from a deficiency in alpha-dystroglycan protein expression, and as such may represent a new type of dystroglycanopathy where expression, but not glycosylation, is affected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。