Blocking Migration of Polymorphonuclear Myeloid-Derived Suppressor Cells Inhibits Mouse Melanoma Progression

阻断多形核粒细胞衍生的抑制细胞的迁移可抑制小鼠黑色素瘤的进展

阅读:5
作者:Christopher Groth, Ludovica Arpinati, Merav E Shaul, Nina Winkler, Klara Diester, Nicolas Gengenbacher, Rebekka Weber, Ihor Arkhypov, Samantha Lasser, Vera Petrova, Hellmut G Augustin, Peter Altevogt, Jochen Utikal, Zvi G Fridlender, Viktor Umansky

Background

Despite recent improvement in the treatment of malignant melanoma by immune-checkpoint inhibitors, the disease can progress due to an immunosuppressive tumor microenvironment (TME) mainly represented by myeloid-derived suppressor cells (MDSC). However, the relative contribution of the polymorphonuclear (PMN) and monocytic (M) MDSC subsets to melanoma progression is not clear. Here, we compared both subsets regarding their immunosuppressive capacity and recruitment mechanisms. Furthermore, we inhibited PMN-MDSC migration in vivo to determine its effect on tumor progression.

Conclusions

We provide evidence for the tumor-promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.

Methods

Using the RET transgenic melanoma mouse model, we investigated the immunosuppressive function of MDSC subsets and chemokine receptor expression on these cells. The effect of CXCR2 inhibition on PMN-MDSC migration and tumor progression was studied in RET transgenic mice and in C57BL/6 mice after surgical resection of primary melanomas.

Results

Immunosuppressive capacity of intratumoral M- and PMN-MDSC was comparable in melanoma bearing mice. Anti-CXCR2 therapy prolonged survival of these mice and decreased the occurrence of distant metastasis. Furthermore, this therapy reduced the infiltration of melanoma lesions and pre-metastatic sites with PMN-MDSC that was associated with the accumulation of natural killer (NK) cells. Conclusions: We provide evidence for the tumor-promoting properties of PMN-MDSC as well as for the anti-tumor effects upon their targeting in melanoma bearing mice.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。