Clustering induces switching between phoretic and osmotic propulsion in active colloidal rafts

聚集诱导活性胶体筏中的泳动推进和渗透推进之间的切换

阅读:5
作者:Dolachai Boniface #, Sergi G Leyva #, Ignacio Pagonabarraga, Pietro Tierno

Abstract

Active particles driven by chemical reactions are the subject of intense research to date due to their rich physics, being intrinsically far from equilibrium, and their multiple technological applications. Recent attention in this field is now shifting towards exploring the fascinating dynamics of active and passive mixtures. Here we realize active colloidal rafts, composed of a single catalytic particle encircled by several shells of passive microspheres, and assembled via light-activated chemophoresis. We show that the cluster propulsion mechanism transits from diffusiophoretic to diffusioosmotic as the number of colloidal shells increases. Using the Lorentz reciprocal theorem, we demonstrate that in large clusters self-propulsion emerges by considering the hydrodynamic flow via the diffusioosmotic response of the substrate. The dynamics in our active colloidal rafts are governed by the interplay between phoretic and osmotic effects. Thus, our work highlights their importance in understanding the rich physics of active catalytic systems.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。