HSP90/CDC37 inactivation promotes degradation of LKB1 protein to suppress AMPK signaling in bronchial epithelial cells exposed to sulfur mustard analog, 2-chloroethyl ethyl sulfide

HSP90/CDC37 失活促进 LKB1 蛋白降解,从而抑制暴露于硫芥子气类似物 2-氯乙基乙基硫化物的支气管上皮细胞中的 AMPK 信号传导

阅读:6
作者:Feng Ye, Xiaogang Wang, Haoyin Liu, Xunhu Dong, Jin Cheng, Mingliang Chen, Guorong Dan, Yan Sai, Zhongmin Zou

Abstract

To investigate the role of the liver kinase (LK) B1 protein, an activator of AMP-activated protein kinase (AMPK), in AMPK signaling suppression when exposed to vesicant, a kind of chemical warfare agent. Cultured human bronchial epithelial cells were inflicted with sulfur mustard (SM) analog, 2-chloroethyl ethyl sulfide (CEES) of 0.2-1.0 mM concentration, and cell proliferation, apoptosis, autophagy, and cellular ATP level were analyzed up to 24 h after the exposure. Focusing on LKB1, heat shock protein (HSP) 90, and cell division cycle (CDC) 37 proteins, the protein expression, phosphorylation, and interaction were examined with western blot, immunofluorescence staining, and/or immunoprecipitation. AMPK signaling was found to be inhibited 24 h after being exposed to either sub-cytotoxic (0.5 mM) or cytotoxic (1.0 mM) concentration of CEES based on MTS assay. Consistently, the degradation of the LKB1 protein and its less interaction with the HSP90/CDC37 complex was confirmed. It was found that 1.0, not 0.5 mM CEES also decreased the CDC37 protein, proteasome activity, and cellular ATP content that modulates HSP90 protein conformation. Inhibiting proteasome activity could alternatively activate autophagy. Finally, either 0.5 or 1.0 mM CEES activated HSP70 and autophagy, and the application of an HSP70 inhibitor blocked autophagy and autophagic degradation of the LKB1 protein. In conclusion, we reported here that AMPK signaling inactivation by CEES was a result of LKB1 protein loss via less protein complex formation and enhanced degradation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。