Phosphoinositide lipid phosphatase SHIP1 and PTEN coordinate to regulate cell migration and adhesion

磷脂酰肌醇脂质磷酸酶 SHIP1 和 PTEN 协同调节细胞迁移和粘附

阅读:5
作者:Subhanjan Mondal, Kulandayan K Subramanian, Jiro Sakai, Besnik Bajrami, Hongbo R Luo

Abstract

The second messenger phosphatidylinositol(3,4,5)P(3) (PtdIns(3,4,5)P(3)) is formed by stimulation of various receptors, including G protein-coupled receptors and integrins. The lipid phosphatases PTEN and SHIP1 are critical in regulating the level of PtdIns(3,4,5)P(3) during chemotaxis. Observations that loss of PTEN had minor and loss of SHIP1 resulted in a severe chemotaxis defect in neutrophils led to the belief that SHIP1 rather than PTEN acts as a predominant phospholipid phosphatase in establishing a PtdIns(3,4,5)P(3) compass. In this study, we show that SHIP1 regulates PtdIns(3,4,5)P(3) production in response to cell adhesion and plays a limited role when cells are in suspension. SHIP1((-)/(-)) neutrophils lose their polarity upon cell adhesion and are extremely adherent, which impairs chemotaxis. However, chemo-taxis can be restored by reducing adhesion. Loss of SHIP1 elevates Akt activation following cell adhesion due to increased PtdIns(3,4,5)P(3) production. From our observations, we conclude that SHIP1 prevents formation of top-down PtdIns(3,4,5)P(3) polarity to facilitate proper cell attachment and detachment during chemotaxis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。