Notch pathway regulates osimertinib drug-tolerant persistence in EGFR-mutated non-small-cell lung cancer

Notch 通路调控 EGFR 突变非小细胞肺癌中奥希替尼药物耐受性的持续性

阅读:5
作者:Hirofumi Takahashi, Jun Sakakibara-Konishi, Megumi Furuta, Tetsuaki Shoji, Kosuke Tsuji, Daisuke Morinaga, Eiki Kikuchi, Junko Kikuchi, Takuro Noguchi, Kanako C Hatanaka, Yutaka Hatanaka, Naofumi Shinagawa, Satoshi Konno

Abstract

Osimertinib is a third-generation epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitor (TKI) that has shown marked antitumor activity in patients with EGFR-mutated non-small-cell lung cancer (NSCLC). However, these effects are transient and most patients develop resistance. Reversible drug-tolerant persister (DTP) cells are defined as a small subpopulation of cells with markedly reduced sensitivity and non-genetic acquired resistance to EGFR-TKIs. Notch is a transmembrane receptor that plays an important role in tumorigenesis. We previously reported that there is significant crosstalk between the Notch and EGFR pathways in NSCLC. Moreover, the Notch pathway is associated with resistance to previous-generation EGFR-TKIs. However, the role of Notch in osimertinib resistance is not fully understood. In this study, we evaluated whether Notch is involved in osimertinib resistance. We show that NOTCH1 and Notch target genes are upregulated in osimertinib DTP cells, and that the addition of a γ-secretase inhibitor (GSI), a Notch inhibitor, impairs drug-tolerant persistence in vitro and in vivo. Compared with osimertinib, combined GSI and osimertinib suppress phospho-ERK partly by enhancing DUSP1 expression. Furthermore, Notch1 and HES1 were upregulated after EGFR-TKI treatment in half of human EGFR-mutated NSCLC tumor tissues. These results suggest that the combination of GSI and osimertinib may be a potential therapy for EGFR-mutated NSCLC.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。