Serum Creatine, Not Neurofilament Light, Is Elevated in CHCHD10-Linked Spinal Muscular Atrophy

CHCHD10 相关脊髓性肌萎缩症患者血清肌酸(而非神经丝轻链)升高

阅读:6
作者:Julius Järvilehto, Sandra Harjuhaahto, Edouard Palu, Mari Auranen, Jouni Kvist, Henrik Zetterberg, Johanna Koskivuori, Marko Lehtonen, Anna Maija Saukkonen, Manu Jokela, Emil Ylikallio, Henna Tyynismaa2

Conclusions

Biomarkers of muscle mass and damage are altered in SMAJ serum, indicating a role for skeletal muscle in disease pathogenesis in addition to neurogenic damage. Despite the minimal mitochondrial pathology in skeletal muscle, signs of a metabolic shift can be detected.

Methods

We collected serum samples from a cohort of 49 patients with SMAJ, all carriers of the heterozygous c.197G>T p.G66V variant in CHCHD10. As controls, we used age- and sex-matched serum samples obtained from Helsinki Biobank. Creatine kinase and creatinine were measured by standard methods. Neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured with single molecule array (Simoa), fibroblast growth factor 21 (FGF-21), and growth differentiation factor 15 (GDF-15) with an enzyme-linked immunosorbent assay. For non-targeted plasma metabolite profiling, samples were analyzed with liquid chromatography high-resolution mass spectrometry. Disease severity was evaluated retrospectively by calculating a symptom-based score.

Objective

To characterize serum biomarkers in mitochondrial CHCHD10-linked spinal muscular atrophy Jokela (SMAJ) type for disease monitoring and for the understanding of pathogenic mechanisms.

Results

Axon degeneration marker, NfL, was unexpectedly not altered in the serum of patients with SMAJ, whereas astrocytic activation marker, GFAP, was slightly decreased. Creatine kinase was elevated in most patients, particularly men. We identified six metabolites that were significantly altered in serum of patients with SMAJ in comparison to controls: increased creatine and pyruvate, and decreased creatinine, taurine, N-acetyl-carnosine, and succinate. Creatine correlated with disease severity. Altered pyruvate and succinate indicated a metabolic response to mitochondrial dysfunction; however, lactate or mitochondrial myopathy markers FGF-21 or GDF-15 was not changed. Conclusions: Biomarkers of muscle mass and damage are altered in SMAJ serum, indicating a role for skeletal muscle in disease pathogenesis in addition to neurogenic damage. Despite the minimal mitochondrial pathology in skeletal muscle, signs of a metabolic shift can be detected.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。