Alterations of the murine gut microbiome in allergic airway disease are independent of surfactant protein D

过敏性呼吸道疾病中小鼠肠道微生物群的改变与表面活性蛋白 D 无关

阅读:4
作者:Kenneth K Barfod, Michael Roggenbuck, Suzan Al-Shuweli, Dalia Fakih, Søren J Sørensen, Grith L Sørensen

Background

SP-D is an important host defense lectin in innate immunity and SP-D deficient mice show several abnormal immune effects and are susceptible to allergen-induced airway disease. At the same time, host microbiome interactions play an important role in the development of allergic airway disease, and alterations to gut microbiota have been linked to airway disease through the gut-lung axis. Currently, it is unknown if the genotype (Sftpd-/- or Sftpd+/+) of the standard SP-D mouse model can affect the host microbiota to such an degree that it would overcome the cohousing effect on microbiota and interfere with the interpretation of immunological data from the model. Generally, little is known about the effect of the SP-D protein in itself and in combination with airway disease on the microbiota. In this study, we tested the hypothesis that microbiome composition would change with the lack of SP-D protein and presence of allergic airway disease in the widely used SP-D-deficient mouse model.

Conclusions

Our results show that the composition of the microbiota is not influenced by the SP-D deficient genotype under naïve or OVA induced airway disease. However, OVA sensitization and pulmonary challenge did alter the gut microbiota, supporting a bidirectional lung-gut crosstalk. Future mechanistic investigations of the influence of induced allergic airway disease on gut microbiota are warranted.

Results

We describe here for the first time the lung and gut microbiota of the SP-D mouse model with OVA induced allergic airway disease. After the challenge animals were killed and fecal samples were taken from the caecum and lungs were subjected to bronchoalveolar lavage for comparison of gut and lung microbiota by Illumina 16S rRNA gene sequencing. A significant community shift was observed in gut microbiota after challenge with OVA. However, the microbial communities were not significantly different between SP-D deficient and wild type mice from the same cages in either naïve or OVA treated animals. Wild type animals did however show the largest variation between mice. Conclusions: Our results show that the composition of the microbiota is not influenced by the SP-D deficient genotype under naïve or OVA induced airway disease. However, OVA sensitization and pulmonary challenge did alter the gut microbiota, supporting a bidirectional lung-gut crosstalk. Future mechanistic investigations of the influence of induced allergic airway disease on gut microbiota are warranted.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。