Inhibition of calpain reduces oxidative stress and attenuates endothelial dysfunction in diabetes

抑制钙蛋白酶可减少氧化应激并减轻糖尿病中的内皮功能障碍

阅读:6
作者:Bainian Chen, Qing Zhao, Rui Ni, Futian Tang, Limei Shan, Inga Cepinskas, Gediminas Cepinskas, Wang Wang, Peter W Schiller, Tianqing Peng

Aims

The present study was to investigate the role of calpain in reactive oxygen species (ROS) production in endothelial cells and endothelium-dependent vascular dysfunction under experimental conditions of diabetes.

Conclusions

This study suggests that calpain may play a role in vascular endothelial cell ROS production and endothelium-dependent dysfunction in diabetes. Thus, calpain may be an important therapeutic target to overcome diabetes-induced vascular dysfunction.

Results

Exposure to high glucose activated calpain, induced apoptosis and reduced nitric oxide (NO) production without changing eNOS protein expression, its phosphorylation and dimers formation in primary human umbilical vein endothelial cells (HUVECs). These effects of high glucose correlated with intracellular ROS production and mitochondrial superoxide generation. Selectively scavenging mitochondrial superoxide increased NO production in high glucose-stimulated HUVECs. Inhibition of calpain using over-expression of calpastatin or pharmacological calpain inhibitor prevented high glucose-induced ROS production, mitochondrial superoxide generation and apoptosis, which were concurrent with an elevation of NO production in HUVECs. In mouse models of streptozotocin-induced type-1 diabetes and OVE26 type-1 diabetic mice, calpain activation correlated with an increase in ROS production and peroxynitrite formation in aortas. Transgenic over-expression of calpastatin reduced ROS production and peroxynitrite formation in diabetic mice. In parallel, diabetes-induced reduction of endothelium-dependent relaxation in aortic ring was reversed by over-expression of calpastatin in mouse models of diabetes. However, the protective effect of calpastatin on endothelium-dependent relaxation was abrogated by eNOS deletion in diabetic mice. Conclusions: This study suggests that calpain may play a role in vascular endothelial cell ROS production and endothelium-dependent dysfunction in diabetes. Thus, calpain may be an important therapeutic target to overcome diabetes-induced vascular dysfunction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。