Glabridin attenuates endothelial dysfunction and permeability, possibly via the MLCK/p-MLC signaling pathway

光甘草定可能通过 MLCK/p-MLC 信号通路减轻内皮功能障碍和通透性

阅读:6
作者:Ganxian Wang, Guangcheng Sun, Yi Wang, Pei Yu, Xue Wang, Birong Zhou, Huaqing Zhu

Abstract

Atherosclerosis is caused by various factors, and Glabridin may have protective effects on the cardiovascular system. The purpose of the present study was to evaluate the effects of Glabridin on atherosclerosis and evaluate whether Glabridin attenuates arteriosclerosis and endothelial permeability by suppressing the myosin light chain (MLC) kinase (MLCK)/phosphorylated (p)-MLC system via the mitogen activated protein kinase (MAPK) signaling pathway. Male New Zealand rabbits were randomly divided into 3 groups: The control group was administered an ordinary diet, whereas the high fat group and the Glabridin (2 mg/kg/d) intervention group were administered a high fat diet. Following 12 weeks, the blood lipid levels of rabbits, the morphological structure of the arterial wall, the arterial intimal permeability, the endothelial function and the mRNA levels of MLCK were measured. Western blot analysis was used to detect the levels of MLCK, p-c-Jun N-terminal kinase (JNK), p-extracellular signal regulated kinase (ERK), and p-p38. The high-fat diet group exhibited significantly increased total cholesterol and triglycerides, and endothelial dysfunction, which were attenuated by Glabridin treatment. Notably, the aortic endothelial permeability was increased in the high-fat diet group but was ameliorated in the Glabridin treatment group. Hyperlipidemia enhanced the expression of p-MLC and MLCK, which were associated with the increased phosphorylation of ERK, p38 and JNK. These changes were also ameliorated by Glabridin. In conclusion, the results of the present study suggested that atherosclerosis may be associated with upregulated MLCK expression and activity, which was downregulated by Glabridin. The mechanism of action of Glabridin was thought to proceed through modulating MAPK pathway signal transduction. However, further studies are required to adequately illuminate the exact regulatory mechanisms involved.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。