Dataset for transcriptomic, H3K9ac and H3K9me3 profiles during cardiac regeneration

心脏再生过程中转录组、H3K9ac 和 H3K9me3 谱的数据集

阅读:5
作者:Xuelong Wang, Huiping Guo, Feifei Yu, Hui Zhang, Ying Peng, Chenghui Wang, Gang Wei, Jizhou Yan

Abstract

Acetylation and tri-methylation of histone H3 lysine 9 (H3K9ac and H3K9me3) play an interactive regulatory role in the epigenetic regulation of gene expression during heart development and cardiovascular disease, but little is known about their possible role in heart regeneration. Here we utilized genome-wide high-throughput RNA sequencing (RNA-seq) and chromatin immunoprecipitation with high-throughput sequencing (ChIP-seq) for H3K9ac and H3K9me3, carried out on regenerative cardiac tissues at different days post amputation in zebrafish (Danio rerio) to investigate dynamic changes in gene expression and the epigenetic landscape of H3K9ac and H3K9me3. The STAR, Bowtie2, MACS2, and deepTools2 were mainly used for RNA-Seq or ChIP-seq data analysis. In this article, we present detailed information on experiment design, data generation, quality assessment and processing pipeline. Raw reads of the RNA-seq and ChIP-seq data have been deposited at the NCBI GEO repository with the accession number GSE158104. Our data will be a valuable resource for the elucidation of H3K9ac and H3K9me3 involvement in the regulation of gene transcription during cardiac regeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。