Alterations of mesenchymal stem cells on regulating Th17 and Treg differentiation in severe aplastic anemia

间充质干细胞在重型再生障碍性贫血中调控Th17和Treg分化的变化

阅读:5
作者:Ju-Pi Li, Kang-Hsi Wu, Wan-Ru Chao, Yi-Ju Lee, Shun-Fa Yang, Yu-Hua Chao

Abstract

Immune-mediated hematopoietic destruction is a key factor in idiopathic severe aplastic anemia (SAA). With great immunomodulatory functions, mesenchymal stem cells (MSCs) are important for bone marrow niche. While the underlying etiology of immunologic changes in SAA bone marrow remains unknown, dysfunctional MSCs are implicated as a major cause. To provide evidence for their defects in immunomodulation, alterations of SAA MSCs in regulating T cell differentiation were determined. During differentiation from CD4+ T cells into T helper 17 (Th17) cells under polarization conditions, impaired inhibition on IL-17 and IL-1β production was noted when cocultured with SAA MSCs compared to control MSCs (P < 0.05). After stimulation of Th17 activation, the percentage of IL-17-secreting cells was significantly increased in the SAA group (9.1 ± 1.5% vs 6.6 ± 0.4%, P < 0.01). Under regulatory T (Treg) polarization, a higher percentage of CD4+CD25+FoxP3+ Treg cells was detected when cocultured with SAA MSCs compared to control MSCs (8.1 ± 0.5% vs 5.8 ± 0.8%, P < 0.01). Inconsistently, transforming growth factor-β (TGF-β) concentrations in the culture supernatant were decreased and IL-1β concentrations were elevated in the SAA group. Our data indicated impaired inhibition of SAA MSCs on Th17 activation and aberrant regulation of SAA MSCs on Treg differentiation. Increased IL-17 and IL-1β levels with decreased TGF-β levels in the supernatant suggested the potential of SAA MSCs for triggering a hyperinflammatory environment. Dysfunctional MSCs could contribute to the lack of immunoprotection in the bone marrow, which may be associated with SAA.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。