Self-Assembled Porous-Reinforcement Microstructure-Based Flexible Triboelectric Patch for Remote Healthcare

用于远程医疗的自组装多孔增强微结构柔性摩擦电贴片

阅读:5
作者:Hao Lei #, Haifeng Ji #, Xiaohan Liu, Bohan Lu, Linjie Xie, Eng Gee Lim, Xin Tu, Yina Liu, Peixuan Zhang, Chun Zhao, Xuhui Sun, Zhen Wen

Abstract

Realizing real-time monitoring of physiological signals is vital for preventing and treating chronic diseases in elderly individuals. However, wearable sensors with low power consumption and high sensitivity to both weak physiological signals and large mechanical stimuli remain challenges. Here, a flexible triboelectric patch (FTEP) based on porous-reinforcement microstructures for remote health monitoring has been reported. The porous-reinforcement microstructure is constructed by the self-assembly of silicone rubber adhering to the porous framework of the PU sponge. The mechanical properties of the FTEP can be regulated by the concentrations of silicone rubber dilution. For pressure sensing, its sensitivity can be effectively improved fivefold compared to the device with a solid dielectric layer, reaching 5.93 kPa-1 under a pressure range of 0-5 kPa. In addition, the FTEP has a wide detection range up to 50 kPa with a sensitivity of 0.21 kPa-1. The porous microstructure makes the FTEP ultra-sensitive to external pressure, and the reinforcements endow the device with a greater deformation limit in a wide detection range. Finally, a novel concept of the wearable Internet of Healthcare (IoH) system for real-time physiological signal monitoring has been proposed, which could provide real-time physiological information for ambulatory personalized healthcare monitoring.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。