Viability dataset on microencapsulated probiotics: Sodium alginate viscosity effect

微胶囊益生菌活力数据集:海藻酸钠粘度效应

阅读:5
作者:Araceli Olivares, Paulina Silva

Abstract

Probiotics must be delivered alive to exert a positive health effects in site of action. But, they must survive different extreme condition through intestinal tract. Microencapsulation techniques have received considerable attention and facilitate a suitable carrier system to reach the target site. The encapsulation techniques applied to probiotics can be classified into two groups, depending on the method used to form the beads: extrusion (droplet method) and emulsion or two-phase system [1], where extrusion is evolved in the vibration technology and in particular, when the wavelength of an asymmetric disturbance exceeds the jet circumference, the break-up occurs. Droplet size depends on nozzle (jet) diameter, viscosity of fluid, surface tension, jet velocity and frequency of disturbance [2,3]. The data presented in this article evaluated the performance of microencapsulated Lactobacillus casei (probiotic bacteria) using vibration technology and using two kinds of sodium alginate gel matrix (low and medium viscosity) and compare the effect over viability. The best conditions for higher viability of probiotics were at a concentration of sodium alginate (medium viscosity) at 2%, with a nozzle of 450 μm and a frequency of 1000 Hz. The data are related to the research article entitled "Microencapsulation of probiotics by efficient vibration technology" [3], where Microencapsulator provide by BÜCHI (Encapsulated B-390) was used.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。