Global effects of RAB3GAP1 dysexpression on the proteome of mouse cortical neurons

RAB3GAP1 表达异常对小鼠皮质神经元蛋白质组的整体影响

阅读:4
作者:Yanchen Liu #, Fenfang Tian #, Shuiming Li #, Wei Chen #, Weibo Gong, Hong Xie, Dan Liu, Rongzhong Huang, Wei Liao, Faping Yi, Jian Zhou

Abstract

Mounting studies have demonstrated that RAB3GAP1 expression is modified in brain diseases with multiple neurobiological functions and processes and acts as a potentially significant target. However, the cellular and molecular events arising from RAB3GAP1 dysexpression are still incompletely understood. In this work, underexpression and overexpression of RAB3GAP1 were first induced into cultured mouse cortical neurons by transfection with lentivirus plasmids. Then we globally explored the effects of RAB3GAP1 dysexpression on the proteome of the neurons through the use of isobaric tag for relative and absolute quantitation (iTRAQ)-based quantitative proteomics with bioinformatics. A total of 364 proteins in the RAB3GAP1-underexpression group and 314 proteins in the RAB3GAP1-overexpression group were identified to be differentially expressed. Subsequent bioinformatics analysis indicated that the proteome functional expression profiles induced by RAB3GAP1 underexpression and overexpression were different, suggesting the potential differences in biological processes and cellular effects. Subsequent intergroup cross-comparison revealed some candidate target proteins regulated directly by RAB3GAP1. Further parallel reaction monitoring (PRM) analysis illustrated that Sub1, Ssrp1, and Top1 proteins might serve as new potentially important linkers in the RAB3GAP1-mediated autophagy pathway in the cortical neurons. Collectively, the current proteomics data furnished new valuable insights to better understand the regulatory molecular mechanism of neuronal RAB3GAP1.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。