Investigation of the Role of Aromatic Residues in the Antimicrobial Peptide BuCATHL4B

抗菌肽 BuCATHL4B 中芳香族残基的作用研究

阅读:9
作者:Matthew R Necelis, Luis E Santiago-Ortiz, Gregory A Caputo

Background

Antimicrobial Peptides (AMPs) are an attractive alternative to traditional small molecule antibiotics as AMPs typically target the bacterial cell membrane. A Trp-rich peptide sequence derived from water buffalo (Bubalus bubalis), BuCATHL4B was previously identified as a broad-spectrum antimicrobial peptide.

Conclusion

There appears to be little correlation between membrane permeabilization and activity, indicating these peptides may have additional mechanisms of action beyond membrane disruption. The results also identify two sequences, denoted FFF and YYW, which retain antibacterial activity but have markedly reduced hemolytic activity.

Methods

Minimal Inhibitory Concentration (MIC)

Objective

In this work, native Trp residues were replaced with other naturally occurring aromatic amino acids to begin to elucidate the importance of these residues on peptide activity.

Results

MIC results indicate the original, tryptophan-rich sequence, and the phenylalanine substituted sequences exhibit strong inhibition of bacterial growth. In permeabilization assays, peptides with phenylalanine substitutions have higher levels of membrane permeabilization than those substituted with tyrosine. In addition, one of the two-tyrosine substituted sequence, YWY, behaves most differently in the lowest antimicrobial activity, showing no permeabilization of bacterial membranes. Notably the antimicrobial activity is inherently species dependent, with varying levels of activity against different bacteria.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。