Transfer learning reveals sequence determinants of the quantitative response to transcription factor dosage

迁移学习揭示了转录因子剂量定量反应的序列决定因素

阅读:5
作者:Sahin Naqvi, Seungsoo Kim, Saman Tabatabaee, Anusri Pampari, Anshul Kundaje, Jonathan K Pritchard, Joanna Wysocka

Abstract

Deep learning approaches have made significant advances in predicting cell type-specific chromatin patterns from the identity and arrangement of transcription factor (TF) binding motifs. However, most models have been applied in unperturbed contexts, precluding a predictive understanding of how chromatin state responds to TF perturbation. Here, we used transfer learning to train and interpret deep learning models that use DNA sequence to predict, with accuracy approaching experimental reproducibility, how the concentration of two dosage-sensitive TFs (TWIST1, SOX9) affects regulatory element (RE) chromatin accessibility in facial progenitor cells. High-affinity motifs that allow for heterotypic TF co-binding and are concentrated at the center of REs buffer against quantitative changes in TF dosage and strongly predict unperturbed accessibility. In contrast, motifs with low-affinity or homotypic binding distributed throughout REs lead to sensitive responses with minimal contributions to unperturbed accessibility. Both buffering and sensitizing features show signatures of purifying selection. We validated these predictive sequence features using reporter assays and showed that a biophysical model of TF-nucleosome competition can explain the sensitizing effect of low-affinity motifs. Our approach of combining transfer learning and quantitative measurements of the chromatin response to TF dosage therefore represents a powerful method to reveal additional layers of the cis-regulatory code.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。