ChIP-Seq analysis of the adult male mouse brain after developmental exposure to arsenic

成年雄性小鼠大脑发育过程中接触砷后的 ChIP-Seq 分析

阅读:11
作者:Christina R Tyler, Jessica A Weber, Matthew Labrecque, Justin M Hessinger, Jeremy S Edwards, Andrea M Allan

Abstract

Exposure to the common environmental contaminant arsenic impacts the epigenetic landscape, including DNA methylation and histone modifications, of several cell types. Developmental arsenic exposure (DAE) increases acetylation and methylation of histone proteins and the protein expression of several chromatin-modifying enzymes in the dentate gyrus (DG) subregion of the adult male mouse brain [26]. To complement and support these data, ChIP-Seq analysis of DNA associated with trimethylation of histone 3 lysine 4 (H3K4me3) derived from the adult male DG after DAE was performed. DAE induced differential H3K4me3 enrichment on genes in pathways associated with cellular development and growth, cell death and survival, and neurological disorders, particularly as they relate to cancer, in the adult male brain. Comparison of H3K4me3 enrichment in controls revealed mechanisms that are potentially lacking in arsenic-exposed animals, including neurotransmission, neuronal growth and development, hormonal regulation, protein synthesis, and cellular homeostasis. New pathways impacted by arsenic include cytoskeleton organization, cell signaling, and potential disruption of immune function and warrant further investigation using this DAE paradigm in the mouse brain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。