Investigation of Oxide Layer Development of X6CrNiNb18-10 Stainless Steel Exposed to High-Temperature Water

高温水中 X6CrNiNb18-10 不锈钢氧化层发展研究

阅读:7
作者:Georg Veile, Radhika Hirpara, Simon Lackmann, Stefan Weihe

Abstract

The oxide layer development of X6CrNiNb18-10 (AISI 347) during exposure to high-temperature water has been investigated. Stainless steels are known to form a dual oxide layer in corrosive environments. The secondary Fe-rich oxide layer has no significant protective effect. In contrast, the primary Cr-rich oxide layer is known to reach a stabilized state, protecting the base metal from further oxidation. This study's purpose was to determine the development of oxide layer dimensions over exposure time using SEM, TEM and EDX line scans. While a parabolic development of Cr in the protective primary layer and Fe in the secondary layer was observed, the dimensions of the Ni layer remained constant. Ni required the presence of a pronounced Fe-rich secondary layer before being able to reside on the outer secondary layer. With increasing immersion time, the Ni element fraction surpassed the Cr element fraction in the secondary layer. Oxide growth on the secondary layer could be observed. After 480 h, nearly the entire surface was covered by the outer oxide layer. In the metal matrix, no depletion of Cr or Ni could be observed over time; however, an increased presence of Cr and Ni in the primary layer was found at the expense of Fe content. The Nb-stabilized stainless steel was subject to the formation of Niobium pentoxide (Nb2O5), with the quantity and magnitude of element fraction increasing over exposure time.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。