AMPKα Is Suppressed in Bladder Cancer through Macrophage-Mediated Mechanisms

AMPKα 通过巨噬细胞介导的机制在膀胱癌中受到抑制

阅读:5
作者:Stavros Kopsiaftis, Poornima Hegde, John A Taylor 3rd, Kevin P Claffey

Abstract

Bladder cancer presents as either low- or high-grade disease, each with distinct mutational profiles; however, both display prominent mTORC1 activation. One major negative regulator of mTORC1 is AMPK, which is a critical metabolic regulator that suppresses cellular growth in response to metabolic stress by negatively regulating mTORC1. Alterations in the activation and protein levels of AMPK have been reported in breast, gastric, and hepatocellular carcinoma. To investigate whether AMPK suppression is responsible for mTOR activation in bladder cancer, the levels of AMPKα were quantified in a cohort of primary human bladder cancers and adjacent nontumor tissues. The levels of p-AMPKα, AMPKα1, AMPKα2, and total AMPKα were significantly suppressed in both low- and high-grade disease when compared with nontumor tissue. To elucidate the AMPKα suppression mechanism, we focused on inflammation, particularly tumor-infiltrating macrophages, due to their reported role in regulating AMPK expression. Treatment of HTB2 cancer cells with varying doses of differentiated U937 macrophage conditioned medium (CM) demonstrated a dose-dependent reduction of AMPKα protein. Additionally, macrophage CM treatment of HTB2 and HT1376 bladder cells for various times also reduced AMPKα protein but not mRNA levels. Direct TNFα treatment also suppressed AMPKα at the protein but not RNA level. Finally, staining of the human cohort for CD68, a macrophage marker, revealed that CD68+ cell counts correlated with reduced AMPKα levels. In summary, these data demonstrate the potential role for inflammation and inflammatory cytokines in regulating the levels of AMPKα and promoting mTORC1 activation in bladder cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。