Identification of novel toxins associated with the extracellular contractile injection system using machine learning

使用机器学习识别与细胞外收缩注射系统相关的新型毒素

阅读:7
作者:Aleks Danov #, Inbal Pollin #, Eric Moon, Mengfei Ho, Brenda A Wilson, Philippos A Papathanos, Tommy Kaplan, Asaf Levy

Abstract

Secretion systems play a crucial role in microbe-microbe or host-microbe interactions. Among these systems, the extracellular contractile injection system (eCIS) is a unique bacterial and archaeal extracellular secretion system that injects protein toxins into target organisms. However, the specific proteins that eCISs inject into target cells and their functions remain largely unknown. Here, we developed a machine learning classifier to identify eCIS-associated toxins (EATs). The classifier combines genetic and biochemical features to identify EATs. We also developed a score for the eCIS N-terminal signal peptide to predict EAT loading. Using the classifier we classified 2,194 genes from 950 genomes as putative EATs. We validated four new EATs, EAT14-17, showing toxicity in bacterial and eukaryotic cells, and identified residues of their respective active sites that are critical for toxicity. Finally, we show that EAT14 inhibits mitogenic signaling in human cells. Our study provides insights into the diversity and functions of EATs and demonstrates machine learning capability of identifying novel toxins. The toxins can be employed in various applications dependently or independently of eCIS.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。