Effect of IGFBP-4 during In Vitro Maturation on Developmental Competence of Bovine Cumulus Oocyte Complexes

IGFBP-4 在体外成熟过程中对牛卵丘卵母细胞复合体发育能力的影响

阅读:5
作者:Adriana Raquel Camacho de Gutiérrez, Oguz Calisici, Christine Wrenzycki, Juan Carlos Gutiérrez-Añez, Christine Hoeflich, Andreas Hoeflich, Árpád Csaba Bajcsy, Marion Schmicke

Abstract

Insulin-like growth factors (IGFs) are essential for oocyte maturation. Their bioavailability is regulated by their respective binding proteins (IGFBPs) and proteases. IGFBP-4 blocks the biological effects of IGFs. High IGFBP-4 expression has been associated with follicle atresia. We hypothesized that IGFBP-4 affects oocyte developmental competence during maturation. Therefore, the aim of this study was to examine the effect of IGFBP-4 on the developmental rate of bovine cumulus-oocyte complexes (COCs) during in vitro embryo production. Abattoir-derived COCs were matured with rbIGFBP-4 (2000, 540, and 54 ng/mL) compared to a control. Cumulus expansion, oocyte maturation, cleavage, blastocyst, and hatching rates were evaluated. Furthermore, blastocyst gene expression of SOCS2, STAT3, SLC2A1, SLCA3, BAX, and POU5F1 transcripts were quantified using RT-qPCR. No statistical differences were detected among the groups for cumulus expansion, maturation, cleavage, blastocyst rates, or all gene transcripts analyzed. However, at day 8 and 9, the number of total hatching and successfully hatched blastocysts was lower in 2000 ng/mL rbIGFBP-4 compared to the control (day 8: total hatching: 17.1 ± 0.21 vs. 31.2 ± 0.11%, p = 0.02 and hatched blastocyst 6.7 ± 0.31 vs. 21.5 ± 0.14%, p = 0.004; day 9 total hatching 36.4 ± 0.18 vs. 57.7 ± 0.10%, p = 0.009 and hatched blastocyst 18.2 ± 0.21 vs. 38.1 ± 0.11%, p = 0.004). We concluded that high concentrations of rbIGFBP-4 might negatively affect the subsequent ability of the embryo to hatch and possibly compromise further elongation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。