Dissecting SOX9 dynamics reveals its differential regulation in osteoarthritis

解剖 SOX9 动力学揭示其在骨关节炎中的差异调节

阅读:12
作者:Kannan Govindaraj, Sakshi Kannan, Rodrigo Coutinho de Almeida, Lucas Jansen Klomp, Marcel Karperien, Ingrid Meulenbelt, Janine N Post

Abstract

The transcription factor SOX9 is integral to tissue homeostasis and is implicated in skeletal malformation, campomelic dysplasia, and osteoarthritis (OA). Despite extensive research, the complete regulatory landscape of SOX9 transcriptional activity, interconnected with signaling pathways (TGFβ, WNT, BMP, IHH, NFκB, and HIF), remains challenging to decipher. This study focuses on elucidating SOX9 signaling in OA pathology using Fluorescence Recovery After Photobleaching (FRAP) to assess SOX9 activity directly in live human primary chondrocytes (hPCs). Single cell FRAP data revealed two distinct subpopulations with differential SOX9 dynamics, showing varied distribution between healthy and OA hPCs. Moreover, inherently elevated SOX9-DNA binding was observed in healthy hPCs compared to preserved and OA counterparts. Anabolic factors (BMP7 and GREM1) and catabolic inhibitors (DKK1 and FRZb) were found to modulate SOX9 transcriptional activity in OA-hPCs. These findings provide valuable insights into the intricate regulation of SOX9 signaling in OA, suggesting potential therapeutic avenues for modulating SOX9 activity in diseased states.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。