Simulating clinical features on chest radiographs for medical image exploration and CNN explainability using a style-based generative adversarial autoencoder

使用基于风格的生成对抗自动编码器模拟胸部 X 光片上的临床特征,以进行医学图像探索和 CNN 可解释性

阅读:13
作者:Kyle A Hasenstab, Lewis Hahn, Nick Chao, Albert Hsiao

Abstract

Explainability of convolutional neural networks (CNNs) is integral for their adoption into radiological practice. Commonly used attribution methods localize image areas important for CNN prediction but do not characterize relevant imaging features underlying these areas, acting as a barrier to the adoption of CNNs for clinical use. We therefore propose Semantic Exploration and Explainability using a Style-based Generative Adversarial Autoencoder Network (SEE-GAAN), an explainability framework that uses latent space manipulation to generate a sequence of synthetic images that semantically visualizes how clinical and CNN features manifest within medical images. Visual analysis of changes in these sequences then facilitates the interpretation of features, thereby improving explainability. SEE-GAAN was first developed on a cohort of 26,664 chest radiographs across 15,409 patients from our institution. SEE-GAAN sequences were then generated across several clinical features and CNN predictions of NT-pro B-type natriuretic peptide (BNPP) as a proxy for acute heart failure. Radiological interpretations indicated SEE-GAAN sequences captured relevant changes in anatomical and pathological morphology associated with clinical and CNN predictions and clarified ambiguous areas highlighted by commonly used attribution methods. Our study demonstrates SEE-GAAN can facilitate our understanding of clinical features for imaging biomarker exploration and improve CNN transparency over commonly used explainability methods.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。