Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts

通过单原子催化剂从类海水溶液中电合成氯

阅读:11
作者:Yangyang Liu #, Can Li #, Chunhui Tan #, Zengxia Pei, Tao Yang, Shuzhen Zhang, Qianwei Huang, Yihan Wang, Zheng Zhou, Xiaozhou Liao, Juncai Dong, Hao Tan, Wensheng Yan, Huajie Yin, Zhao-Qing Liu, Jun Huang, Shenlong Zhao3

Abstract

The chlor-alkali process plays an essential and irreplaceable role in the modern chemical industry due to the wide-ranging applications of chlorine gas. However, the large overpotential and low selectivity of current chlorine evolution reaction (CER) electrocatalysts result in significant energy consumption during chlorine production. Herein, we report a highly active oxygen-coordinated ruthenium single-atom catalyst for the electrosynthesis of chlorine in seawater-like solutions. As a result, the as-prepared single-atom catalyst with Ru-O4 moiety (Ru-O4 SAM) exhibits an overpotential of only ~30 mV to achieve a current density of 10 mA cm-2 in an acidic medium (pH = 1) containing 1 M NaCl. Impressively, the flow cell equipped with Ru-O4 SAM electrode displays excellent stability and Cl2 selectivity over 1000 h continuous electrocatalysis at a high current density of 1000 mA cm-2. Operando characterizations and computational analysis reveal that compared with the benchmark RuO2 electrode, chloride ions preferentially adsorb directly onto the surface of Ru atoms on Ru-O4 SAM, thereby leading to a reduction in Gibbs free-energy barrier and an improvement in Cl2 selectivity during CER. This finding not only offers fundamental insights into the mechanisms of electrocatalysis but also provides a promising avenue for the electrochemical synthesis of chlorine from seawater electrocatalysis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。