ANXA1-FPR2 axis mitigates the susceptibility to atrial fibrillation in obesity via rescuing AMPK activity in response to lipid overload

ANXA1-FPR2 轴通过恢复脂质超载引起的 AMPK 活性来减轻肥胖患者发生心房颤动的可能性

阅读:10
作者:Peng Liu #, Lu Wang #, Yixin Wang #, Linyan Jin, Haoyu Gong, Jiali Fan, Yudi Zhang, Haiquan Li, Bowen Fu, Qiaozhu Wang, Yuping Fu, Boyuan Fan, Xiaoli Li, Hongtao Wang, Xinghua Qin, Qiangsun Zheng

Abstract

Atrial fibrillation (AF) is the most prevalent arrhythmia in clinical practice, and obesity serves as a significant risk factor for its development. The underlying mechanisms of obesity-related AF remain intricate and have yet to be fully elucidated. We have identified FPR2 as a potential hub gene involved in obesity-related AF through comprehensive analysis of four transcriptome datasets from AF patients and one transcriptome dataset from obese individuals, and its expression is up-regulated in both AF and obese individuals. Interestingly, ANXA1, the endogenous ligand of FPR2, was found to exhibit differential expression with AF and obesity. Specifically, it was observed to be down-regulated in AF patients but up-regulated in obese individuals. The susceptibility to AF in obese mice induced by high-fat diet (HFD) was increased following with the FPR2 blocker Boc-2.The administration of exogenous ANXA1 active peptide chain Ac2-26 can mitigate the susceptibility to AF in obese mice by attenuating atrial fibrosis, lipid deposition, oxidative stress injury, and myocardial cell apoptosis. However, this protective effect against AF susceptibility is reversed by AAV9-shAMPK-mediated AMPK specific knockdown in the myocardium. The vitro experiments demonstrated that silencing ANXA1 exacerbated lipid deposition, oxidative stress injury, and apoptosis induced by palmitic acid (PA) in cardiomyocytes. Additionally, Ac2-26 effectively mitigated myocardial lipid deposition, oxidative stress injury, and apoptosis induced by PA. These effects were impeded by FPR2 inhibitors Boc-2 and WRW4. The main mechanism involves the activation of AMPK by ANXA1 through FPR2 in order to enhance fatty acid oxidation in cardiomyocytes, thereby ultimately leading to a reduction in lipid accumulation and associated lipotoxicity. Our findings demonstrate that the ANXA1-FPR2 axis plays a protective role in obesity-associated AF by alleviating metabolic stress in the atria of obese mice, thereby emphasizing its potential as a promising therapeutic target for AF.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。