Age dependence of radiation-induced renal cell carcinomas in an Eker rat model

Eker 大鼠模型中放射诱发肾细胞癌的年龄依赖性

阅读:5
作者:Toshiaki Kokubo, Shizuko Kakinuma, Toshiyuki Kobayashi, Fumiko Watanabe, Riichirou Iritani, Kaori Tateno, Mayumi Nishimura, Tetsu Nishikawa, Okio Hino, Yoshiya Shimada

Abstract

Exposure to carcinogens early in life may contribute to cancer development later in life. The amount of radiation exposure children experience during medical procedures has been increasing, so it is important to evaluate the radiation risk of cancer in developing organs. Toward this goal, we assessed the risk of developing renal cell carcinoma using Eker rats as a kidney tumor model. F1 hybrids of male Eker (Tsc2 mutant) and female F344 rats were irradiated with 0.5 or 2 Gy gamma radiation on gestation days 15 and 19, and on postnatal days 5, 20, and 49. At 27 weeks of age, kidneys were examined for proliferative lesions. Preneoplastic lesions such as phenotypically altered tubules increased after postnatal irradiation as a function of age-at-irradiation, and hyperplasia were greatly increased after perinatal and postnatal irradiation. In contrast, development of adenoma and adenocarcinoma were evident in animals irradiated at perinatal ages, being maximal at gestational day 19. The frequency of LOH at the Tsc2 locus was unexpectedly low - 0% (0 of 4) for the unirradiated control, and 17% (6 of 35) for the irradiated group. Irrespective of LOH, the mTOR (mammalian target of rapamycin) pathway, which is negatively regulated by the Tsc1/2 complex, was activated in both benign and malignant lesions, as evidenced by phosphorylation of S6 ribosomal protein and 4E-BP1. This suggests that the wild-type Tsc2 allele may be functionally inactivated. In conclusion, actively growing kidneys in perinatal-aged (F344 x Eker) F1 rats (Tsc2(+/-)) are at risk for radiation-induced malignant transformation of the renal epithelium associated with mTOR activation.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。