Mechanism and Development of Thermo-Rheological Properties of Asphalts Modified by Reactive Polymer Systems

反应性聚合物体系改性沥青热流变性能机理及发展

阅读:5
作者:Martin Jasso, Juan Sebastian Perez Jaimes, Esteban Felipe Tellez Vega

Abstract

The new class of reactive polymers is designed to modify asphalt through chemical reactions with asphalt components. The complexity of such systems and the long experience with thermoplastic elastomers as well as with some other "classical" modifiers, and to a degree that our present testing methods and even specifications revolve around these materials, might obscure the fact that we are dealing with rather different modification systems and possibly with new emerging asphalt paving technologies. Our present work attempted to compare two different reactive polymer systems with the "classical" system which uses thermoplastic elastomer. The impact of reactive polymer systems on asphalt was studied through material properties manifested by specification tests and through the development of thermo-rheological properties in linear and non-linear viscoelastic regions. As expected, the behavior of reactive polymeric systems with different chemistries also differed among themselves. The available results showed that the reactive groups of polymers react with polar components of asphalt leading to higher stiffness at elevated pavement temperatures and differing impact on low temperature properties. The data point to a significantly improved resistance to plastic deformation of pavement in the case of reactive polymers, despite the fact that elastic recovery-based specification tests failed to identify this improvement.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。